Induced transient birefringence of a resonantly pumped molecular gas

نویسندگان

  • Liyang Shen
  • Tak-San Ho
  • Shenghua Shi
  • Herschel Rabitz
  • M. Littman
  • Andrew M. Weiner
چکیده

We present a theoretical study of the induced transient birefringence of a low density homogeneous molecular gas in a resonant pump–probe experiment. The molecular coherent state induced by the resonant pump field is described by second-order perturbation theory. The induced birefringence can be detected by a delayed probe pulse propagating through the molecular medium after illumination by the pump pulse. In the case of a nonresonant probe, the birefringence is linearly proportional to the mean value of the electronic polarizability of the molecular gas. The birefringence signal is composed of distinct components due to population change and those of rotational, vibrational, and mixed vibrational–rotational origins. This is demonstrated by numerical simulations on Li2 gas. Moreover, the quantum beats contained in the birefringence, as a function of the time delay between the pump and probe pulses, is dominated by the pure rotational motion. Finally, the birefringence is sensitive to the shape of the applied pump pulse and dependent on the spectral phase of the pump pulse. © 1996 American Institute of Physics. @S0021-9606~96!01938-1#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles

Collective low-frequency molecular motions have large impact on chemical reactions and structural relaxation in liquids. So far, these modes have mostly been accessed indirectly by off-resonant optical pulses. Here, we provide evidence that intense terahertz (THz) pulses can resonantly excite reorientational-librational modes of aprotic and strongly polar liquids through coupling to the permane...

متن کامل

Birefringence Properties and Surface Relief Grating Formation on Methylacrylate Polymers with Photochromic Side Chains

We have studied light-induced birefringence (LIB) and surface relief grating (SRG) formation in the series of methylacrylate polymers. The effect of material structure such as length of photochromic side chain, glass transition temperature and molecular structure of azo units on LIB and SRG are studied. The optical formation of self-induced SRG on films of these materials is also presented.

متن کامل

Phase-matching conditions for nonlinear frequency conversion by use of aligned molecular gases.

Transient birefringence can be induced in a gas of anisotropic molecules by an intense polarized laser pulse. We propose to use this birefringence to phase match nonlinear optical frequency-conversion processes. The conditions for anisotropic phase matching are derived, and experimental conditions required for phase-matched third-harmonic generation in a gas-filled hollow-core fiber are present...

متن کامل

Comparison of frequency-resolved optical polarization gating induced by molecular alignment and Kerr effects.

We experimentally demonstrated that both the electronic Kerr effect and the molecular alignment in gaseous molecules could be applied as transient gates to diagnose 400 nm target pulses. Their birefringence dissimilarity was clearly visualized by the measured spectrogram and retrieved gate function. In the atomic gas argon, a relatively weak and instantaneous cross phase modulation within the p...

متن کامل

Investigation of Thermal Dispersion and Thermally-Induced Birefringence on High-Power Double Clad Yb:Glass Fiber Laser

In this work the effects of heat generation on the modes of Yb:Glass double clad fiber laser were investigated. The thermal dispersion and thermally-induced birefringence were considered when the gain medium becomes an anisotropic medium. The results showed considerable modifications of laser modes profiles, in particular for transfer magnetic (TM) and transfer electric (TE) modes which their p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996